z.system

En la actualidad, lo que vemos es apenas la punta del iceberg de la transformación que provocará esta herramienta, afirma Xiling Sheng, director de un centro de vanguardia en Universidad de Duke (EE.UU.)

Muriel está sentada en su cocina, acompañada por su bisnieta y la mamá de la chica. Acerca su ojo a la cámara de la computadora que está en la cabecera de la mesa. En cuestión de segundos, la máquina arroja la causa que provoca el deterioro de su visión: degeneración macular. Le sugiere, además, que vaya al médico (que confirma el diagnóstico). La escena transcurre en Inglaterra, en 2028, y forma parte de la aclamada serie de ficción Years and Years.

No resulta nada descabellado. Las noticias sobre la gestión de datos masivos (big data) para entrenar sistemas de inteligencia artificial (IA)​ basados en algoritmos predictivos y modelos de aprendizaje automático que ayudan, entre otras cosas, a detectar en forma precoz y precisa enfermedades se acumulan en cada nuevo número de las principales revistas científicas. Lo que es hoy una realidad -pero también una gran apuesta- en universidades, laboratorios, compañías de biotecnología y centros de salud de avanzada en el mundo, es apenas la punta del iceberg de la transformación que provocará en la práctica médica en los próximos 5 a 10 años, sostiene Xiling Sheng, director del Centro Woo para Big Data y Medicina de Precisión y miembro principal del Centro de Genómica y Biología Computacional de la Universidad de Duke (Estados Unidos).

“La demanda ya existe. Lo muestran los desarrollos en Sillicon Valley (la zona de California que aglutina a compañías emergentes y globales de tecnología, y a instituciones científico-académicas), pero también es el área de conocimiento más popular entre los estudiantes que se acercan a la universidad en este momento”, dice Sheng, quien dirige un laboratorio de vanguardia especializado en medicina de precisión y biología de sistemas que integra técnicas de ingeniería, computacionales y biológicas para estudiar el cáncer, las células madre y la microbiota.

“En un principio las aplicaciones de big data estaban desarrolladas por ingenieros, gente que se dedicaba a la tecnología. Y tenían una noción algo ingenua de que podían copiar los modelos de Google o Facebook para la salud. Lo que entendieron es que la industria de la salud es muy diferente de otras disciplinas. Principalmente debido a la regulación a la que se la somete, la privacidad del paciente y también el estándar más alto de seguridad que tienen que tener“, afirma en diálogo con Clarín durante su paso por Buenos Aires para exponer en un simposio de la fundación Mundo Sano en el Centro Cultural de la Ciencia.

Según Sheng, estamos en una segunda fase.”En esta etapa, en Estados Unidos son los centros médicos los que están liderando el movimiento. Y en China, en el marco de las reformas de políticas de salud que está encarando, el big data se estableció como una de las fuerzas más importantes. Una ventaja que tiene sobre Estados Unidos es que los hospitales más grandes son públicos y los datos le pertenecen al gobierno, lo que les permite realizar pruebas mucho más grandes por los datos poblaciones de los que dispone”.

El uso de point-of-care diagnostics en áreas rurales de China es un botón de muestra de cómo interactúan todas las herramientas. “Hay una regla que establece que los médicos de las ciudades deben permanecer un año allí, pero no se quedan. Para escuchar el corazón de una persona que vive en el campo era necesario que se lo examinara con un estetoscopio. Ahora, por ejemplo, un aparato puede registrar los latidos y, a través del celular, el monitoreo se transmite hasta dónde está el médico. Hay un algoritmo que identifica a quienes presentan condiciones anormales y esos casos son revisados por profesionales que están en las grandes ciudades. Los algoritmos de IA aprenden a interpretar las lecturas del aparato, lo que se complementa con telemedicina. También es aplicable a diagnósticos por imagen. A su vez, esa información está más concentrada en los centros que reciben estas imágenes, lo que les permite a grandes hospitales y a los gobiernos analizar esa información para identificar riesgos, índices de prevalencia”.

En tanto, uno de los grandes casos de éxito de la Universidad de Duke es una aplicación para el diagnóstico temprano del autismo. “Es una condición que es muy importante detectarla en forma temprana, idealmente antes de los dos años, porque en ese momento el cerebro tiene flexibilidad para adaptarse. El diagnóstico requiere llevar a los niños al hospital y la realización de pruebas vinculadas al comportamiento y electroncefalogramas. Hay un gran estigma asociado a esas pruebas, por eso muchos padres no llevan a sus hijos hasta que están seguros y se los sugiere las escuela”, dice Sheng.

La Universidad de Duke desarrolló una aplicación que ayuda a detectar signos de autismo en los niños pequeños. (Duke)

La Universidad de Duke desarrolló una aplicación que ayuda a detectar signos de autismo en los niños pequeños. (Duke)

La app desarrollada y probada en el marco de una investigación utiliza la cámara frontal del teléfono para recopilar videos de las reacciones de los niños mientras miran imágenes diseñadas para detectar patrones de riesgo de autismo (“registra cuán distraídos están o cuán rápido responden”). En el marco del estudio, la app tuvo más de 10.000 descargas, y participaron 1.756 familias con niños de uno a seis años, que subieron más de 4.400 videos.

-Hay mucha investigación  orientada a mejorar y personalizar el diagnóstico y tratamiento de personas con cáncer. ¿Cómo se vincula el big data y la medicina de precisión?

Para las personas con cáncer lo que observa es que el uso del big data va a ser levemente diferente. Los desafíos que enfrenta cada persona con cáncer son distintos. Es una enfermedad que demanda la realización de una gran número de tests de diagnóstico sobre el mismo individuo, entonces se registra mucha información sobre un solo paciente. El enfoque en cáncer, basado en que es tan diverso, está puesto más en medicina de precisión, que es la aplicación de modelos de big data para pacientes individuales.

Desafíos

La utilidad, la equidad y la generalización de modelos predictivos aplicables tanto a enfermedades muy prevalentes como infrecuentes requiere del acceso a una gran cantidad de datos poblacionales. Un enorme caudal de información a la que es díficil de acceder y que no está estructurada (hay que trabajar sobre ella), plantea Sheng. Otro desafío es el modelo de negocios: “¿Quién va a pagar por esto y cómo obtienen ganancias las compañías?” -se pregunta-. Porque la investigación en big data no coincide con el modelo tradicional de pagar una cuota por un servicio”. Y en tercer lugar aparece la regulación: “Hay diferencias culturales y marcos regulatorios en cada país, que hace que los modelos no se puedan transferir rápidamente de uno a otro”.

Esas característas hacen que el proceso para ver el cambio rotundo que el big data y la IA imprimirán en la práctica médica sea “más lento de lo que esperamos, porque requiere el cambio de todo el sistema: desde el médico, la compañía de seguros, los proveedores y el paciente“.

Un modelo argentino de big data para Chagas

El año pasado, la Fundación Bunge y Born realizó una alianza con Fundación Mundo Sano y la empresa Grandata, para trabajar en el desarrollo de un modelo de análisis que permitió identificar, a partir de big data, potenciales nichos de infección con chagas en zonas no endémicas de todo el país.

“Los insumos para elaborar este mapa son los registros de 10.000 millones de registros telefónicos anonimizados y datos vinculados a las viviendas. Partimos de varios miles de antenas concentradas en donde la gente vive en el área central del país. Cada llamada incluye un origen, un destino y un momento. Lo que entendemos es que cada llamado produce un puente que une dos áreas. Lo que nos interesó es cuántos lazos se tienden en el tiempo entre la zona endémica del Gran Chaco y otras ciudades, con la idea de ver que donde estos puentes ocurren con frecuencia hay lazos fuertes y podemos inferir que ha habido procesos migratorios que han hecho que quien tuvo relación en algún momento con el vector de la enfermedad (la vinchuca) ahora esté viviendo afuera, en lugares donde el sistema de salud local no está preparado para reconocer su existencia, diagnosticarlos o tratarlos”, explicaba Antonio Vázquez Brust, de la Fundación Bunge y Born, durante el XIX Simposio Internacional sobre Enfermedades Desatendidas de Mundo Sano.

“Encontramos zonas que se encienden muy lejos, incluso en Tierra del Fuego, en corredores del Gran Buenos Aires y a lo largo de todo el Alto Valle de Río Negro”, añadió. En una próxima etapa, se iniciará un trabajo de campo para cotejar los resultados del modelo predictivo en el terreno (a partir de análisis serológicos en cada zona).

Agenda: inteligencia artificial en el tratamiento del ACV

“Hoy, ya es posible, por ejemplo, con el machine learning– tecnología derivada de la inteligencia artificial donde la máquina de manera autónoma aprende de sus errores- predecir futuros eventos como la presencia de placas coronarias de alto riesgo, seleccionar pacientes para realizar tratamientos endovasculares reduciendo el riesgo de sangrado, o estimar la extensión de la secuela luego de un ACV”, explica Pedro Lylyk, presidente del Congreso SIMI 2019, que desde mañana y hasta el viernes se desarrollará en la Ciudad y en el que los avances en inteligencia artificial tendrán un lugar destacado en la agenda.

 

Fuente: Clarin